Welcome to the Matplotlib Cheat Sheet! This guide includes examples of basic and advanced plotting techniques to help you create stunning visualizations.
1. Import Matplotlib
import matplotlib.pyplot as plt
2. Create a Basic Plot
x = [1, 2, 3, 4]
y = [10, 20, 25, 30]
plt.plot(x, y)
plt.title('Basic Plot')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.show()
3. Customize Line Style and Markers
plt.plot(x, y, linestyle='--', marker='o', color='r')
plt.show()
4. Create a Figure and Subplots
fig, ax = plt.subplots(2, 2) # 2x2 grid of subplots
ax[0, 0].plot(x, y)
ax[0, 0].set_title('Top Left')
plt.tight_layout()
plt.show()
5. Adjust Axes Properties
fig, ax = plt.subplots()
ax.plot(x, y)
ax.set_xlim(0, 5)
ax.set_ylim(0, 35)
ax.set_xticks([1, 2, 3, 4])
ax.set_yticks([10, 20, 30])
ax.set_xticklabels(['A', 'B', 'C', 'D'])
plt.show()
6. Add a Colorbar
import numpy as np
data = np.random.rand(10, 10)
plt.imshow(data, cmap='viridis')
plt.colorbar(label='Intensity')
plt.show()
7. Fancy Colorbar with Ticks
data = np.random.rand(10, 10)
cax = plt.imshow(data, cmap='coolwarm')
cbar = plt.colorbar(cax, ticks=[0, 0.5, 1])
cbar.ax.set_yticklabels(['Low', 'Medium', 'High'])
plt.show()
8. Box Plot
data = [7, 8, 5, 6, 9, 10, 15]
plt.boxplot(data)
plt.title('Box Plot')
plt.show()
9. Bar Plot
categories = ['A', 'B', 'C']
values = [10, 20, 15]
plt.bar(categories, values, color='skyblue')
plt.title('Bar Plot')
plt.show()
10. Horizontal Bar Plot
plt.barh(categories, values, color='lightgreen')
plt.title('Horizontal Bar Plot')
plt.show()
11. Line Plot with Multiple Lines
y2 = [15, 25, 20, 35]
plt.plot(x, y, label='Line 1')
plt.plot(x, y2, label='Line 2', linestyle='--')
plt.legend()
plt.show()
12. Scatter Plot
plt.scatter(x, y, color='red', label='Data Points')
plt.legend()
plt.show()
13. Shaded Region
plt.plot(x, y)
plt.fill_between(x, y, color='yellow', alpha=0.3)
plt.show()
14. Histogram
data = np.random.randn(1000)
plt.hist(data, bins=30, color='purple', alpha=0.7)
plt.title('Histogram')
plt.show()
15. Pie Chart
sizes = [15, 30, 45, 10]
labels = ['A', 'B', 'C', 'D']
plt.pie(sizes, labels=labels, autopct='%1.1f%%')
plt.title('Pie Chart')
plt.show()
16. Adding Grid
plt.plot(x, y)
plt.grid(color='gray', linestyle='--', linewidth=0.5)
plt.show()
17. Logarithmic Scale
plt.plot(x, y)
plt.yscale('log')
plt.title('Logarithmic Scale')
plt.show()
18. Annotate Points
plt.plot(x, y)
plt.annotate('Peak', xy=(3, 25), xytext=(2, 30),
arrowprops=dict(facecolor='black', arrowstyle='->'))
plt.show()
19. Save Figure
plt.plot(x, y)
plt.savefig('plot.png', dpi=300, bbox_inches='tight')
20. Display Multiple Figures
plt.figure(1)
plt.plot(x, y)
plt.figure(2)
plt.plot(y, x)
plt.show()